Multiple and interconnected pathways for L-lysine catabolism in Pseudomonas putida KT2440.

نویسندگان

  • Olga Revelles
  • Manuel Espinosa-Urgel
  • Tobias Fuhrer
  • Uwe Sauer
  • Juan L Ramos
چکیده

L-lysine catabolism in Pseudomonas putida KT2440 was generally thought to occur via the aminovalerate pathway. In this study we demonstrate the operation of the alternative aminoadipate pathway with the intermediates D-lysine, L-pipecolate, and aminoadipate. The simultaneous operation of both pathways for the use of L-lysine as the sole carbon and nitrogen source was confirmed genetically. Mutants with mutations in either pathway failed to use L-lysine as the sole carbon and nitrogen source, although they still used L-lysine as the nitrogen source, albeit at reduced growth rates. New genes were identified in both pathways, including the davB and davA genes that encode the enzymes involved in the oxidation of L-lysine to delta-aminovaleramide and the hydrolysis of the latter to delta-aminovalerate, respectively. The amaA, dkpA, and amaB genes, in contrast, encode proteins involved in the transformation of Delta1-piperidine-2-carboxylate into aminoadipate. Based on L-[U-13C, U-15N]lysine experiments, we quantified the relative use of pathways in the wild type and its isogenic mutants. The fate of 13C label of L-lysine indicates that in addition to the existing connection between the D- and L-lysine pathways at the early steps of the catabolism of L-lysine mediated by a lysine racemase, there is yet another interconnection at the lower end of the pathways in which aminoadipate is channeled to yield glutarate. This study establishes an unequivocal relationship between gene and pathway enzymes in the metabolism of L-lysine, which is of crucial importance for the successful colonization of the rhizosphere of plants by this microorganism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The davDT operon of Pseudomonas putida, involved in lysine catabolism, is induced in response to the pathway intermediate delta-aminovaleric acid.

Pseudomonas putida KT2440 is a soil microorganism that attaches to seeds and efficiently colonizes the plant's rhizosphere. Lysine is one of the major compounds in root exudates, and P. putida KT2440 uses this amino acid as a source of carbon, nitrogen, and energy. Lysine is channeled to delta-aminovaleric acid and then further degraded to glutaric acid via the action of the davDT gene products...

متن کامل

Amino acid racemization in Pseudomonas putida KT2440.

D-Amino acids have been shown to play an increasingly diverse role in bacterial physiology, yet much remains to be learned about their synthesis and catabolism. Here we used the model soil- and rhizosphere-dwelling organism Pseudomonas putida KT2440 to elaborate on the genomics and enzymology of d-amino acid metabolism. P. putida KT2440 catabolized the d-stereoisomers of lysine, phenylalanine, ...

متن کامل

Enzymatic production of 5-aminovalerate from l-lysine using l-lysine monooxygenase and 5-aminovaleramide amidohydrolase

5-Aminovalerate is a potential C5 platform chemical for synthesis of valerolactam, 5-hydroxyvalerate, glutarate, and 1,5-pentanediol. It is a metabolite of l-lysine catabolism through the aminovalerate pathway in Pseudomonas putida. L-Lysine monooxygenase (DavB) and 5-aminovaleramide amidohydrolase (DavA) play key roles in the biotransformation of L-lysine into 5-aminovalerate. Here, DavB and D...

متن کامل

D-lysine catabolic pathway in Pseudomonas putida: interrelations with L-lysine catabolism.

The isolation of several mutant strains blocked in l-lysine degradation has permitted an assessment of the physiological significance of enzymatic reactions related to lysine metabolism in Pseudomonas putida. Additional studies with intact cells involved labeling of metabolic intermediates from radioactive l- or d-lysine, and patterns of enzyme induction in both wild-type and mutant strains. Th...

متن کامل

Benzoxazinoids in Root Exudates of Maize Attract Pseudomonas putida to the Rhizosphere

Benzoxazinoids, such as 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA), are secondary metabolites in grasses. In addition to their function in plant defence against pests and diseases above-ground, benzoxazinoids (BXs) have also been implicated in defence below-ground, where they can exert allelochemical or antimicrobial activities. We have studied the impact of BXs on the interac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 187 21  شماره 

صفحات  -

تاریخ انتشار 2005